Adaptive Regularization in a Constructive Cascade
Network

N.K. Treadgold and T.D. Gedeon
Email:nickt@cse.unsw.edu.au

Department of Information Engineering, School of Computer Science and Engineering,
University of New South Wales, Sydney, Australia.

ABSTRACT

Determining the optimum amount of regularization to ob-
tain the best generalization performance in feedforward neu-
ral networks is a difficult problem, and is a form of the bias-
variance dilemma. This problem is addressed in the CasPer
algorithm, a constructive cascade algorithm that uses weight
decay. Previously the amount of weight decay used by this
algorithm was set by a parameter prior to training, gener-
ally by trial and error. This work explores the use of three
training stages at each point of network construction. Each
training stage has a different weight decay level, and the best
performing decay level based on validation set performance
is used to adapt the decay levels for future network regu-
larization. This not only removes the need to select a decay
value, but was also found to result in better generalization re-
sults compared to networks with fixed, user optimized, decay
levels.

KEYWORDS: Regularization, Weight Decay, Con-
structive Network

1. Introduction

The CasPer algorithm [1], [2], [3] algorithm has been shown
to be a powerful method for training feedforward neural net-
works. CasPer is a constructive algorithm that inserts hidden
neurons one at a time to form a cascade architecture, sim-
ilar to Cascade Correlation (CasCor) [4]. CasPer has been
shown to produce networks with fewer hidden neurons than
CasCor, while also improving the resulting network general-
ization, especially with regression tasks [2]. The reasons for
CasPer’s improved performance is that it does not use either
CasCor’s correlation measure, which can cause poor general-
ization performance [5], or weight freezing, which can lead to
oversize networks [6].

Regularization in CasPer is performed through the use of
weight decay, the magnitude of which is set by a parameter.
The optimal value for this parameter is difficult to estimate
prior to training, and is generally obtained through trial and
error. An inherent problem for the regularization of construc-
tive networks is that the number of weights in the network
is continually changing, and thus even an optimal decay pa-
rameter for a given size network will become redundant as
the network grows. This work explores the use of an adap-
tive decay scheme which is implemented as the network is
constructed. This paper will first give an introduction to the
CasPer algorithm, then describe the adaptive regularization
method and the results of some comparative simulations.

2. The CasPer Algorithm

CasPer uses a modified version of the RPROP algorithm [7]
for network training. RPROP is a gradient descent algorithm
which uses separate adaptive learning rates for each weight.

Each weight begins with an initial learning rate, which is then
adapted depending on the sign of the error gradient seen by
the weight as it traverses the error surface. This results in the
update value for each weight adaptively growing or shrinking
as a result of the sign of the gradient seen by that weight.

The CasPer algorithm constructs cascade networks in a sim-
ilar manner to CasCor: CasPer starts with all inputs con-
nected directly to the outputs, and successively inserts hidden
neurons to form a cascade architecture. RPROP is used to
train the whole network each time a hidden neuron is added.
The use of RPROP is modified, however, such that when
a new neuron is inserted, the initial learning rates for the
weights in the network are reset to values that depend on the
position of the weight in the network. The network is divided
into three separate regions, each with its own initial learn-
ing rate: L1, L2 and L3. The first region is made up of all
weights connecting to the new neuron from previous hidden
and input neurons. The second region consists of all weights
connecting the output of the new neuron to the output neu-
rons. The third region is made up of the remaining weights,
which consist of all weights connected to, and coming from,
the old hidden and input neurons.

The wvalues of L1, L2 and L3 are set such that
L1 >> L2 > L3. The reason for these settings is similar to
the reason that CasCor uses the correlation measure: the
high value of L1 as compared to L2 and L3 allows the new
hidden neuron to learn the remaining network error. Simi-
larly, having L2 larger than L3 allows the new neuron to re-
duce the network error, without too much interference from
other weights. Importantly, however, no weights are frozen,
and hence if the network can gain benefit by modifying an
old weight, this occurs, albeit at an initially slower rate
than the weights connected to the new neuron. In addi-
tion, the L1 weights are trained by a variation of RPROP
termed SARPROP [8]. The SARPROP algorithm is based
on RPROP, but uses a noise factor to enhance the ability of
the network to escape from local minima. In CasPer a new
neuron is installed after the decrease of the RMS error has
fallen below a set amount.

The weight decay used in CasPer is implemented through a
penalization term added to the standard sum of squares error
function. This results in a modification to the error gradient
which is shown below, where A is the decay parameter, and
S is a Simulated Annealing (SA) term. The SA term reduces
the amount of decay as training proceeds, and is reset each
time a new neuron is added to the network.

SE CasPer _ SE
dw;;j - dw;;j

+ Awij[wi;| S

3. Adaptive Regularization

Adaptive regularization is implemented in CasPer through
the use of three training stages for each new hidden neu-
ron inserted into the network. Training is performed using
the same method as the original CasPer algorithm for each
training stage, and is halted using the same criterion. The
commencement of a new training stage results in all RPROP
and SA parameters being reset to their initial values. Impor-
tantly, however, the weights from the previous training stage
are retained and act as the starting point for the next train-
ing stage. This retaining of weights was found to increase the
convergence speed of the network.

The decay level for the network once a new neuron is added
is set to the initial decay value, A;. It is this initial decay
value which is adapted as the network is constructed. The
first training stage uses this initial decay value, and each suc-
cessive stage reduces this value by a factor of ten. After each
training stage the performance of the network on the valida-
tion set is measured, and the network weights recorded. On
completion of the third training stage, the initial decay value
is adapted using the following method: if the best performing
decay value occurred in the first two training stages, the ini-
tial decay is increased by a factor of ten, else it is decreased
by a factor of ten. At this point the weights which produced
the best validation results are restored to the network, the
next neuron is added, and the process repeats.

This scheme begins with the addition of the first hidden unit,
which is given an initial decay value of 0.01. The initial
network with no hidden units is trained using a single training
stage with a decay value of 0.01. For reasons of efficiency, if
the validation result of the second stage is worse than the
first, the third training stage is not performed.

The limits placed on the initial decay value are a maximum
of 0.01 and a minimum of 0.0001, which gives a total decay
range of 0.01 to 0.000001 (due to the three training stages).
The top limit was found to provide a high enough decay level
over a number of noisy regression and real world classifica-
tion problems. Higher decay limits were found to result in
a reduction in network convergence. The lower limit was se-
lected to stop the decay level falling too low, which can occur
in early stages of training when the network is still learning
the general features of the data set.

This decay selection method allows the network to adapt the
level of decay as the network grows in size. It should be noted
that this method is biased to select larger initial decay values
since this value is increased if either of the first two training
stages have the best validation result. The reason for this bias
is that as the network grows in size, more decay in general
is needed. It was also found that better performances were
obtained by starting the adaptation process with the high
initial decay of 0.01, especially for data sets which converge
quickly. The reason for this is that if the starting initial decay
is too low, the network may converge before the decay level
can be brought up to a high enough level.

Another point to note is the choice of reducing the decay
level through each training stage. The motivation for this is
that it allows the network to move into a general area of good
solutions, which can then be refined by lowering the decay.
This is the same motivation for the use of the SA term in the
weight decay. This technique was found experimentally to be
better than the opposite method of increasing decay values

through the training stages. The algorithm incorporating
this adaptive regularization method will be termed ACasPer.

4. Comparative Simulations

To investigate the performance of the ACasPer it was com-
pared against that of CasPer with user optimized decay levels
on a series of benchmark data sets. Three regression func-
tions were chosen to compare CasPer and ACasPer. The
functions are described in detail in [9], and are shown below.

¢ Radial function (rad):

U wy, w0) = 24.234(r (0.75 — r)),
r? = (z1 —0.5)% + (z2 — 0.5)°.

e Complex additive function (cadd):

Fe @y, es) = 1.3356(1.5(1 — 1)
+e* 1 sin(3n(z1 — 0.6)°

+e3@270) gin(4m (25 — 0.9)?)).

e Complex interaction function (cif):

1.9(1.35 4 ¢**sin(13(x1 — 0.6)%)

e "2sin(7x2)).

o (@r,22) =

The set up of training and test data follows the method of
[9]. For each function two sets of training data were created,
one noiseless and one noisy, created using 225 randomly se-
lected pairs [0,1] of abscissa values. The same abscissa values
were used for all three functions. The noisy data was created
by adding independent and identically distributed Gaussian
noise, with mean zero and variance 0.0625, giving an approx-
imate signal to noise ratio of 4 [9]. For each function an
independent test set of size 10000 was generated on a regu-
larly spaced grid [0,1]*>. ACasPer used a validation set of 110
randomly selected points (which included noise for the noisy
datasets). The fraction of variance unexplained (FVU), as
defined in [9], was the measure chosen to compare the per-
formances on the test set. The FVU is proportional to the
total sum of squares error. For each function 50 runs were
performed using different random starting weights. Training
was continued for both algorithms until 30 hidden units had
been installed. The FVU on the test set was measured after
the installation of each hidden unit and the median values
are plotted in Figures 1 to 6. The standard CasPer constant
settings were used [3], [4] for both CasPer and ACasPer.

The results displayed in Figures 1 to 6 show that ACasPer is
able to obtain better generalization results using smaller net-
works than those of CasPer with user optimized decay. This
improvement is most notable for the noisy data sets, where
ACasPer can be seen to avoid overfitting, in comparison to
CasPer which suffers significantly from it. The explanation
for this is simple: since CasPer is using a fixed decay level, at
a certain network size the decay level must become below op-
timal and overfitting occurs. One solution for this in CasPer
is to set a high level of decay, but this can slow learning.

ACasPer, on the other hand, is able to adapt its decay level
to maintain a good level of regularization. An example of

FVU

FVU

FVU

0.009 | |
0.008
0.007
0.006
0.005
0.004
0.003
0.002
0.001

”casper” -e— —|
"acasper” —— |

5 10 15 20 25 30
Hidden Units

Figure 1: Radial results - noise free

0.022 | |

”casper” -o— |

0.02 » »
acasper’ -e—

0.018
0.016
0.014
0.012

0.01

0.008

5 10 15 20 25 30
Hidden Units

Figure 2: Radial results - noisy

0.04 | |

0.035 ”casper” —o— _|

”acasper” -e—
0.03 -

0.025 ¢ n
0.02 .
0.015 n
0.01 .
0.005

5 10 15 20 25 30
Hidden Units

Figure 3: Complex additive results - noise free

0.045 | |

”casper” —o— |
?acasper” -e—

0.035 n

0.04

0.03

FVU
0.025
0.02

0.015

0.01

5 10 15 20 25 30
Hidden Units

Figure 4: Complex additive results - noisy

0.14 | |

”casper” —e— |
”acasper” —e—

0.1 -

0.12

0.08 n
FVU
0.06 - n
0.04 .

0.02 - -

0 | |
5 10 15 20 25 30
Hidden Units

Figure 5: Complex interactive results - noise free

0.14 | |

”casper” —o—
0.12 ”acasper” —e—]

0.1
FVU 0.08
0.06

0.04

0.02

5 10 15 20 25 30
Hidden Units

Figure 6: Complex interactive results - noisy

decay values selected by ACasPer in one run are shown in
Table 1 for both the noise free and noisy versions of the cif
data set. As expected, the noisy version uses greater decay,
especially as the network grows larger. It should also be noted
in the noisy version that early on in training ACasPer uses
low levels of decay. The explanation for this is that at the
early stages of training the network is learning the general
features of the data and lower levels of decay allow this to
be done more successfully. Since at this stage the network
is relatively small, overfitting is unlikely to occur, and hence

the validation set selects lower levels of decay.

Table 1: An example of adapted decay values

[Hidden Unit | cif | cif - noise |
0 0.01 0.01
1 0.0001 0.0001
2 0.001 0.00001
3 0.001 0.0001
4 0.0001 0.00001
5 0.0001 0.000001
6 0.0001 0.0001
7 0.001 0.001
8 0.0001 0.01
9 0.00001 0.01
10 0.000001 0.0001
11 0.000001 0.00001
12 0.000001 0.0001
13 0.000001 0.0001
14 0.000001 0.0001
15 0.000001 0.0001
16 0.000001 0.01
17 0.000001 0.01
18 0.000001 0.01
19 0.000001 0.01
20 0.000001 0.01
21 0.000001 0.01
22 0.00001 0.01
23 0.00001 0.01
24 0.000001 0.01
25 0.000001 0.01
26 0.000001 0.01
27 0.00001 0.01
28 0.00001 0.01
29 0.0001 0.001
30 0.00001 0.01

The disadvantage of ACasPer is that for a given network
size, it is computationally more expensive than CasPer since
it performs three training stages compared to CasPer’s sin-
gle one. Figure 7 shows a plot of the median connection
crossings, a measure of computational cost [4], against hid-
den units installed for both algorithms. While ACasPer can
be seen to be more computationally expensive, it has been
shown to converge faster than CasPer and so less training will
be required in general. In addition, the computational cost
of selecting a good decay value by trial and error in CasPer
is significant. The reason why ACasPer is less than three
times as computationally expensive as CasPer is that often
the third training stage is not performed.

3¢ + 09 : : :

?casper” -o—
?acasper” -e—

2.5e + 09

2e +09 |-

cC
1.5e + 09

le + 09 -

5e + 08

0 5 10 15 20 25 30
Hidden Units

Figure 7: Connection Crossings (CC) for cif with noise

5. Conclusion

The introduction of an adaptive regularization scheme to the
CasPer algorithm has been shown to produce better general-
ization with smaller networks than the original CasPer algo-
rithm using fixed, user optimized, decay levels. It is also able
to reduce overfitting of noisy data and removes the compu-
tational cost of finding good values for regularization.

References

[1] Treadgold, N.K. and Gedeon, T.D., “A Cascade Net-
work Employing Progressive RPROP,” Int. Work Conf.
On Artificial and Natural Neural Networks, pp.733-742
(1997).

[2] Treadgold, N.K. and Gedeon, T.D., “Extending CasPer:
A Regression Survey,” Int. Conf. On Neural Information
Processing, pp.310-313 (1997).

[3] Treadgold, N.K. and Gedeon, T.D., “Extending and
Benchmarking the CasPer Algorithm,” AI'97, Perth
Australia, pp.398-406 (1997).

[4] Fahlman, S.E. and Lebiere, C., “The Cascade-
Correlation Learning Architecture,” Advances in Neural
Information Processing 2, pp.524-532 (1990).

[5] Hwang, J., You, S., Lay, S. and Jou, I., “The Cascade-
Correlation Learning: A Projection Pursuit Learning
Perspective,” IEEE Trans. Neural Networks, Vol.4, 2,
pp.278-289 (1996).

[6] Kwok, T. and Yeung, D., “Experimental Analysis of In-
put Weight Freezing in Constructive Neural Networks,”
Proc. IEEE Int. Conf. On Neural Networks, pp.511-516
(1993).

[7] Riedmiller, M. and Braun, H., “A Direct Adaptive
Method for Faster Backpropagation Learning: The
RPROP Algorithm,” Proc. IEEE Int. Conf. On Neural
Networks, pp.586-591 (1993).

[8] Treadgold, N.K. and Gedeon, T.D., “A Simulated An-
nealing Enhancement to Resilient Backpropagation,”
Proc. Int. Panel Conf. Soft and Intelligent Computing,
Pp-293-298 (1996).

[9] Hwang, J., Lay, S., Maechler, R. and Martin, D., “Re-
gression Modelling in Back-Propagation and Projection
Pursuit Learning,” IEEFE Trans. Neural Networks, Vol.5,
3, pp.342-353 (1994).

